Acid – base balance

Summary of basic facts
Regulation of A-B balance
Pathophysiology of clinically important disorders

Acids vs. Bases
- definition: Bronsted-Lowry (1923)
- normal A:B ratio ~ 1:20

Henderson-Hasselbach equation:
\[\text{pH} = 6.1 + \log \left(\frac{[\text{HCO}_3^-]}{0.03 \text{pCO}_2} \right) \]

- strength is defined in terms of the tendency to donate (or accept) the hydrogen ion to (from) the solvent (i.e. water in biological systems)

Why is pH so important?
- \([H^+] \sim \text{nmol/l}, [K^+, Na^+, Cl^-, HCO}_3^-] \sim \text{mmol/l};\) however, \([H^+]\) is crucial:
 - pH affects function of proteins
 - hydrogen bonds = 3-D structure = function
 - All the known low molecular weight and water soluble biosynthetic intermediates possess groups that are almost completely ionised at neutral pH
 - pH-dependent ionisation (i.e. charge) serves to an efficient intracellular trapping of ionised compounds within the cell and its organelles

- Exceptions:
 - macromolecules (proteins)
 - mostly charged anyway or size-trapping or hydrophobic
 - lipids
 - those needed intracellularly are protein-bound
 - waste products
 - excretion is desirable
The most important pH for the body is the intracellular pH

- Intracellular pH is maintained at about the pH of neutrality (~6.8 at 37°C) because this is the pH at which metabolite intermediates are all charged and trapped inside the cell.

- Extracellular pH is higher by 0.5 to 0.6 pH units and this represents about a 4-fold gradient favouring the exit of hydrogen ion from the cell to maintain it at a stable value because of the powerful effects of intracellular [H+] on metabolism

 - maintaining a stable intracellular pH by:
 - ‘Intracellular buffering’ (chemical, metabolic, organelles)
 - Adjustment of arterial pCO2
 - Loss of fixed acids from the cell into the extracellular fluid

pN → [H+] = [OH−]

pN=7.0 at 25°C for pure H2O
pN=6.8 at 37°C in cell

pH is constantly “impaired” by metabolism

- production of metabolic acids
 - “volatile” acids (CO2 resp. H2CO3)
 - Intermediate metabolism of substrates (oxidation)
 - CO2 + H2O → H2CO3

- “fixed” acids
 - strong anorganic acids
 - metabolism of proteins resp. PA
 - sulphonic (Met, Cys)
 - hydrochlorous (Arg, Lys)
 - lactate
 - anaerobic glycolysis
 - keton bodies
 - metabolism of fatty acids → ketogenesis → acetoacetate and hydroxybutyrate

- regulation of pH
 - intracell. a extracell. buffers
 - lungs - respiration (CO2)
 - kidneys
 - reabsorption of HCO3−
 - excretion of H+

Chemical buffers and other types of H+ buffering

- (1) proteins (amphoteric)
 - H+ and CO2 diffuse across plasma membrane and are buffered
 - ECF - albumin
 - haemoglobin is strictly speaking ICF, but...!!
 - ICF - cellular proteome

- (2) inorganic buffers
 - ECF - carbonic acid / bicarbonate
 - H2CO3 / HCO3−
 - ICF - phosphoric acid / hydrogen phosphate
 - H3PO4 / H2PO4− / HPO42−

- (3) transcellular exchange H+/K+
 - changes of ABB influence potassium balance and vice versa !!!
 - hormonal effects!!
Organs involved in the regulation of ABB

- Equilibrium with plasma
- High buffer capacity
- Excretion of CO₂ by alveolar ventilation: minimally 12,000 mmol/day
- Respiratory centre reacts in minutes, maximum compensation in 12 – 24 hod, then decline of sensitivity
- Reabsorption of filtered bicarbonate: 4,000 to 5,000 mmol/day
- Excretion of the fixed acids (acid anion and associated H+):
 - about 100 mmol/day
- CO₂ production from complete oxidation of substrates:
 - 20% of the body's daily production
 - such as lactate, ketones and amino acids
- Metabolism of organic acids
- Metabolism of ammonium
 - conversion of NH₄⁺ to urea in the liver consumes HCO₃⁻
- Production of plasma proteins
 - esp. albumin contributing to the anion gap
- Bone inorganic matrix consists of hydroxyapatite crystals (Ca₁₀(PO₄)₆(OH)₂]
 - bone can take up H⁺ in exchange for Ca²⁺, Na⁺ and K⁺ (ionic exchange)
 - release of HCO₃⁻, CO₃⁻ or HPO₄²⁻

Regulation by resp. system - CO₂

- differences in the stimulation of respiration by pCO₂ ([H⁺] resp. in the CSF) and/or pO₂<60mmHg
- changes of alveolar ventilation
- disorders:
 - acidemia
 - → respiratory centre of the brain
 - → ↑ alveolar ventilation
 - → ↓ CO₂
 - alkalemia
 - → respiratory centre of the brain
 - → ↓ alveolar ventilation
 - → ↑ CO₂

Respiratory centre

- long-lasting respiratory acidosis (↑PaCO₂) decreases sensitivity of resp.
 - centre to PaCO₂ and PaO₂ becomes the main regulator
- administration of oxygen therapeutically can sometimes lead to worsening of resp.
 - acidosis or even to respiratory arrest !!!

Renal system – fixed H⁺ & HCO₃⁻

- Proximal tubular mechanisms:
 - reabsorption of HCO₃⁻ filtered at the glomerulus
 - carboanhydrase
 - NHE-3 exchanger (reabsorption of HCO₃⁻ is coupled with reabsorption of Na⁺)
 - production of NH₄⁺
 - from glutamine in prox. tubule with parallel formation of HCO₃⁻
 - glutamine is a way of body to dispose of nitrogen (in liver)
 - most of NH₄⁺ recycles in the renal medulla
 - Distal tubular mechanisms:
 - net excretion of H⁺
 - normally 70mmol/day
 - max. 700mmol/day
 - together with proximal tubule excretion of H⁺ could increase up to 1000x!!! (↓pH of urine down to 4.5)
 - reaction with HPO₄²⁻ - formation of “titratable acidity” (TA)
 - addition of NH₄⁺ to luminal fluid
 - reabsorption of remaining HCO₃⁻
Regulation of ABB in different parts of the nephron

Na+/K+ ATP-ase
- Electrogenic (ratio 3 Na+:2 K+)
- Energy for secondary-active transports with Na+

Assessment of A-B balance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Arterial blood (interval)</th>
<th>Venous blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.40</td>
<td>7.33 - 7.43</td>
</tr>
<tr>
<td>H+ (nmol/l)</td>
<td>40</td>
<td>36 - 44</td>
</tr>
<tr>
<td>pCO₂ (mmHg/kPa)</td>
<td>40 / 5.3</td>
<td>35 - 45 / 5.1 - 5.5</td>
</tr>
<tr>
<td>HCO₃⁻ (mmol/l)</td>
<td>25</td>
<td>22 - 26</td>
</tr>
<tr>
<td>BE</td>
<td>±2</td>
<td>24 - 28</td>
</tr>
<tr>
<td>AG (mEq/l)</td>
<td>12</td>
<td>10 - 14</td>
</tr>
<tr>
<td>Hb saturation (%)</td>
<td>95</td>
<td>80 - 95</td>
</tr>
<tr>
<td>pO₂ (mmHg)</td>
<td>95</td>
<td>80 - 95</td>
</tr>
</tbody>
</table>

Disorders of A-B balance
- Acidosis vs. alkalosis: abnormal condition lowering or raising arterial pH
 - Before activation of compensatory changes in response to the primary aetiopathological factor
- Simple vs. mixed A-B disorders: single vs. multiple aetiopathological factors
- Disorders are defined according to their effect on pH of ECF
 - Acidaemia: arterial pH<7.36 (i.e. [H+]>44 nM)
 - Alkalaemia: arterial pH>7.44 (i.e. [H+]<36 nM)
- Primary cause → buffers → compensation → correction
Causes

- **Respiratory**
 - abnormal processes which tend to alter pH because of a primary change in p_{CO_2} levels
 - acidosis
 - alkalosis
 - buffering
 - predominantly intracellular proteins
 - compensation
 - hyperventilation
 - typically limited, hyperventilation often cause of disorder
 - renal
 - delayed (days)

- **Metabolic**
 - abnormal processes which tend to alter pH because of a primary change in $[HCO_3^-]$ or pH
 - acidosis
 - alkalosis
 - buffering
 - predominantly bicarbonate system
 - compensation
 - hyperventilation
 - rapid (min - hrs)
 - renal
 - delayed (days)

Respiratory acidosis (RAC)

- primary disorder is a ↓pH due to ↑$PaCO_2$ (>40 mmHg), i.e. hypercapnia

 - time course:
 - acute (↓pH)
 - chronic (↓pH or normalisation of pH)
 - renal compensation – retention of HCO_3^-; 3-4 days

- causes of RAC:
 - decreased alveolar ventilation (most cases)
 - the defect leading to this can occur at any level in the respiratory control mechanism
 - the degree of hypoxemia corresponds with degree of alveolar hyperventilation
 - enrichment of %O$_2$ in inhaled air corrects solely “pure hypoventilation” !!!
 - presence of excess CO$_2$ in the inspired gas
 - re-breathing of CO$_2$-containing expired gas
 - addition of CO$_2$ to inspired gas
 - insufflation of CO$_2$ into body cavity (e.g. for laparoscopic surgery)
 - increased production of CO$_2$ by the body
 - malignant hyperthermia, sepsis

Pathologic effects of hypercapnia

- CO$_2$ rapidly diffuses across membranes
 - depression of intracellular metabolism

- Extreme hypercapnia
 - cerebral anaesthetic effects
 - (pCO_2>100mmHg)

- Effect of hypoxemia

RA - inadequate alveolar ventilation

- Central respiratory depression & other CNS problems
 - drug depression of respiratory centre (e.g. by opiates, sedatives, anaesthetics)
 - CNS trauma, infarct, haemorrhage or tumour
 - hypoventilation of obesity (e.g. Pickwick syndrome)
 - cervical cord trauma or lesions (at or above C4 level)
 - high central neural blockade
 - poliomyelitis
 - tetanus
 - cardiac arrest with cerebral hypoxia

- Nerve or muscle disorders
 - Guillain-Barre syndrome
 - Myasthenia gravis
 - muscle relaxant drugs
 - toxins e.g. organophosphates, snake venom
 - various myopathies

- Lung or chest wall defects
 - acute on COPD
 - chest trauma -confusion, haemothorax
 - pneumothorax
 - diaphragmatic paralysis
 - pulmonary oedema
 - adult respiratory distress syndrome
 - restrictive lung disease
 - aspiration

- Airway disorders
 - upper airway obstruction
 - laryngospasm
 - bronchospasm / asthma

- External factors
 - Inadequate mechanical ventilation

- An arterial pCO_2>90 mmHg is not compatible with life in patients breathing room air:
 - $PaO_2 = (0.21 \times (760 - 47)) - 90/0.8 = 37$ mmHg
RAC – compensation and correction

- **Acute RAC - buffering only!**
 - About 99% of this buffering occurs intracellularly
 - Proteins (haemoglobin and phosphates) are the most important intravascular buffers for CO₂, but their concentration is low relative to the amount of carbon dioxide requiring buffering.
 - The bicarbonate system is not responsible for any buffering of a respiratory acid-base disorder.
 - The system cannot buffer itself.
 - Efficiency of compensatory hyperventilation is usually limited.

- **Chronic RAC - renal compensation**
 - Bicarbonate retention
 - Takes 3 or 4 days to reach its maximum
 - \(\text{PaCO}_2 \rightarrow \text{H}^+ \) secretion into the lumen:
 - \(\text{Na}^+ \) reabsorption in exchange for \(\text{H}^+ \)
 - \(\text{NH}_4 \) production and secretion to 'buffer' the \(\text{H}^+ \) in the tubular lumen, parallel regeneration of HCO₃⁻.

- **RAC treatment**
 - The pCO₂ rapidly returns to normal with restoration of adequate alveolar ventilation.
 - Rapid fall in pCO₂ (especially if the RA has been present for some time) can result in:
 - Severe hypotension
 - "Post hypercapnic alkalosis"
Pathologic effects of MAC

- **Respiratory**
 - hyperventilation
 - shift of haemoglobin dissociation curve to the right
- **Cardiovascular**
- **Others**
 - increased bone resorption (chronic acidosis only)
 - shift of K⁺ out of cells causing hyperkalemia

Some effects of MAC are opposite

- **Cardiovascular system**
 - pH>7.2 - effect of SNS stimulation dominates (catecholamines)
 - pH<7.2
 - direct inhibitory effect of [H⁺] on contractility
 - vasodilatory effect of [H⁺]
- **Hb dissociation curve**
- **Plasma [K⁺] reflects**
 - K⁺/H⁺ exchange
 - glomerular filtration rate
 - e.g. renal failure
 - osmotic diuresis
 - e.g. ketoacidosis

Common types of MAC - ketoacidosis

- **Contributing disorders**
 - increased lipolysis in adipose tissue – mobilisation of NEFA
 - increased production of keton bodies from acetyl CoA (lipolysis of TG) in liver (β-hydroxybutyrate, acetoacetate, acetone)
 - their mutual ratio depends on ration NADH/NAD⁺
- **Ketoacidosis is a consequence of**
 - ↓ insulin/glucagon
 - ↑ catecholamines, ↑ glucocorticoids
- **(1) Diabetic**
 - hyperglycaemia + precipitating factors (stress, infection)
 - lipolysis (insulin, catecholamines) – NEFA – dysregulation of NEFA metabolism in liver (insulin, glucagon) – ↑NEFA oxidation –↑acetyl CoA – ketogenesis
 - clin. manifestation results from hyperglycaemia and ketoacidosis
- **(2) Alcoholic**
 - typically chron. alcoholic several days after last binge, starving
 - hepatic metabolism effective enough to prevent prolonged acidosis
 - impaired metabolism of lactate
 - type A = hypoxic
 - shock (hypovolemic, distributive, cardiogenic), hypotension, anemia, heart failure, liver failure, malignancy, ... most often in combination !!!
 - type B = inhibition of complete metabolism of lactate
 - drugs – biguanids (inhibition of ox. phosphorylation in mitochondria)
- **(3) Starvation**

Common types of MAC - lactic acidosis

- **Under normal circumstances entire lactate recycles**
 - lactate - pyruvate - complete oxidation
 - gluconeogenesis (60% liver, 30% kidney)
 - renal threshold (5mmol/l) guarantee complete reabsorption under normal circumstances
- **Lactic acidosis**
 - increased production
 - physical exercise, convulsions
 - impaired metabolism of lactate
 - type A = hypoxic
 - shock (hypovolemic, distributive, cardiogenic), hypotension, anemia, heart failure, liver failure, malignancy, ... most often in combination !!!
 - type B = inhibition of complete metabolism of lactate
 - drugs – biguanids (inhibition of ox. phosphorylation in mitochondria)
Metabolic alkalosis (MAL)

- **Pathophysiology (according to the event, parallel change of circulating volume):**
 - (A) hypovolemic MAL - compensatory retention of Na in kidney (aldosterone) leads to increased excretion of H+
 - loss of acidic ECF - prolonged vomiting or gastric juice drainage
 - overuse of diuretic (apart from acetazolamide and K sparing diuretics)
 - congenital hypochloremia
 - some diarrhoeas (secretory type - CI losses)
 - diabetes insipidus
 - Bartter’s syndrome
 - (B) normo-/hypervolemic MAL
 - posthypercapnic
 - increased alkali intake (antacids - NaHCO3, CaCO3)
 - primary hyperaldosteronism
 - secondary hyperaldosteronism (e.g. renovascular hypertension)
 - Cushing syndrome
 - liver failure (tertiary hyperaldosteronism) combined with MAL due to stimulation of resp. centre by liver toxic metabolites
 - **compensation**
 - buffers
 - retention of pCO2 by stimulation of resp. centre
 - however limited - pCO2 = 55mmHg hypoxia becomes regulatory parameter
 - renal compensation limited as well because kidney either pathogenetically contributes to MAL (B) or counteracts hypovolemia (A) – circulus vitiosus

- **↑pH due to ↑HCO3:**
 - loss of ECF
 - vomiting
 - hypovolemia

- **Metabolic alkalosis**