Diabetes mellitus

Practicals – experimental diabetes mellitus in laboratory animal
Definition of DM

- DM is a group of metabolic disorders characterized by hyperglycemia as a reason of impaired effect of insulin
 - absolute
 - relative
 - δ insulin resistance
 - δ impaired insulin secretion (gluco- and lipotoxicity)
- **chronic hyperglycemia** leads to cell & tissue damage (**complications**)
 - retina
 - kidney
 - nerves
Diagnosis of DM

• classical **symptoms** of diabetes + random plasma glycemia ≥ 11.1 mmol/l
 – any time of the day
 – symptoms include polyuria, polydipsia and rapid loose of weight

• **FPG** (fasting plasma glucose) ≥ 7.0 mmol/l
 – fasting means at least 8 h from the last meal

• **2-h PG** (postprandial glucose) ≥ 11.1 mmol/l during oGTT
 – according to WHO standard load of 75g of glucose
Interpretation of glycemia

- **FPG:**
 - < 6.1 mmol/l = normal glycemia
 - $6.1 - 7.0$ mmol/l = IFG (impaired fasting glucose)
 - ≥ 7.0 mmol/l = diabetes

- **oGTT – 2h PG:**
 - < 7.8 mmol/l = normal glucose tolerance
 - $7.8 - 11.1$ mmol/l = IGT (impaired glucose tolerance)
 - ≥ 11.1 mmol/l = diabetes
Oral glucose tolerance test

<table>
<thead>
<tr>
<th>Time</th>
<th>Glycemia (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>na lačno</td>
<td>5.6</td>
</tr>
<tr>
<td>60 min</td>
<td>6.7</td>
</tr>
<tr>
<td>120 min</td>
<td>6.7</td>
</tr>
</tbody>
</table>

- **diabetes**
- **PGT**
- **norma**
Practicals

i.p. ANESTHESIA

1) blood sample from a tail vein
2) measurement of FPG on glucometer
3) repeated measurement of glycemia on glucometer in 30 a 90 min time intervals
4) determination of glucosuria in urine sample

1 week before 1/2 animals ALLOXAN i.v. 30 mg/kg

application of 20% glucose 1ml/100g i.p.

results:
• graph FPG - 30mPG - 90mPG
• comparison of DM x non-DM
Pathophysiology of diabetes mellitus
Regulation of glycemia

- **humoral**
 - principal
 - insulin
 - glucagon
 - auxiliary
 - glucocorticoids
 - adrenalin
 - growth hormone

- **neural**
 - sympaticus
 - hyperglycemia
 - parasympaticus
 - hypoglycemia
Mutual interchange of substrates in intermediate metabolism

GLUCOSE
- glucose-6-P
- pyruvate
- lactate

ATP

liver, muscle

GLYCOGEN
- glycogenesis, glycogenolysis

glycolysis

liver, kidney, intestine

GLUCOSE
- glucose-1-phosphate

glycolysis

glycerol
- glucogenic amino acids

gluconeogenesis

keton bodies
- acetyl-CoA
- citrate cycle
- respiratory chain and oxidative phosphorylation
- ATP
- H₂O

β-oxidation

free fatty acids
Question – how does glucose enter the cell???
Insulin

- preproinsulin → proinsulin → insulin + C-peptide
- exocytosis into portal circulation
 - 50% degraded during first pass through liver
- total daily production 20 - 40 U
 - 1/2 basal secretion, 1/2 stimulated
- basal secretion pulsatile
 - 5 - 15 min intervals
- stimulated – glucose, amino acids, FFA, GIT hormones
 - early phase (ready insulin)
 - late phase (synthesis de novo)
Synthesis of insulin

PREPROINSULIN (11.5 kDa)

endoplasmic reticulum

microvesicles

PROINSULIN (9 kDa)

Golgi apparatus

secretory granules

INSULIN + C-PEPTIDE

prohormon-konvertáza 2
prohormon-konvertáza 3

karboxypeptidáza

INSULIN + C-PEPTIDE
Relationship glycemia – insulin secretion

- Regulace SACHARIDY (Regulation of carbohydrates)
- GLUT-2
- Glucokinase
- Glucose-6-P
- ATP
- ATP-sensitive K⁺ channel
- Ca²⁺ channel
- Depolarization
- Ca²⁺
- Translocation and exocytosis of insulin granules

- Regulace AMINOKYSÉLINAMI (Regulation of amino acids)
- Leu
- Gln
- Arg⁺
- Lys⁺
- His⁺
Intracellular cascade of insulin receptor

- Insulin binds to the insulin receptor
- Activation of IRS (Insulin Receptor Substrate)
- Phosphorylation of IRS
- Activation of PI3-K (Phosphatidylinositol 3-Kinase)
- Formation of PIP3
- Activation of PKB (Protein Kinase B)
- Stimulation of glycogen synthesis
- Stimulation of lipogenesis
- Gene expression
- Translocation of GLUT4 to the plasma membrane
- Glucose uptake
Classification of tissues according to insulin action:

- **insulin-sensitive**
 - muscle, adipose tissue
 - facilitated diffusion by GLUT4
 - integration into cytoplasmic membrane regulated by insulin
 - liver
 - stimulation of glycogenolysis
 - inhibition of gluconeogenesis

- **insulin-non-sensitive**
 - others (incl. muscle, adipose tissue, liver)
 - transport of glucose depends on
 - concentration gradient
 - density of transporters (GLUT1-4,8-10)
 - rate of glycolysis
Diabetes mellitus

• heterogeneous syndrome characterized by hyperglycemia due to deficiency of insulin action (as a result of complete depletion or peripheral resistance)

• prevalence of DM in general population 5%, over the age of 65 already 25%
Causes of insulin deficiency

• **absolute**
 – destruction of the β-cells of the islets of Langerhan´s

• **relative**
 – insulin
 • abnormal molecule of insulin (mutation)
 • defective conversion of preproinsulin to insulin
 • circulating antibodies against insulin or receptor
 – insulin resistance in peripheral tissue
 • receptor defect
 • post-receptor defect
Classification of DM

<table>
<thead>
<tr>
<th>I. DIABETES MELLITUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus of type 1 (T1DM)</td>
</tr>
<tr>
<td>Diabetes mellitus of type 2 (T2DM)</td>
</tr>
<tr>
<td>Gestational diabetes mellitus</td>
</tr>
<tr>
<td>Other specific types</td>
</tr>
<tr>
<td>- genetic defects of β cell function (MODY)</td>
</tr>
<tr>
<td>- genetic abnormalities of insulin receptor</td>
</tr>
<tr>
<td>- exocrine pancreas disorders</td>
</tr>
<tr>
<td>- endocrinopathies</td>
</tr>
<tr>
<td>- iatrogenic</td>
</tr>
<tr>
<td>- rare genetic syndromes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. IMPAIRED GLUCOSE TOLERANCE (IGT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- with obesity</td>
</tr>
<tr>
<td>- without obesity</td>
</tr>
</tbody>
</table>
Type 1 DM (formerly IDDM)

- selective destruction of β cells of LO in genetically predisposed individuals
 - chrom. 6 - HLA (DR3-DQ2 a DR4-DQ8), chrom. 11 - insulin gene
 - initiation by infection (viruses)
- autoimmunity mediated by T-lymphocytes (antibodies against β cells (ICA, GAD) though)
- manifestation typically in childhood
- absolute dependence on exogenous supplementation by insulin
Type 2 DM (formerly NIDDM)

- imbalance between secretion and affect of insulin
- genetic predisposition – polygenic
 - insulin resistance
 - impairment of secretion
- clinically manifested T2DM has concomitant insulin resistance and impairment of secretion
 - due to epigenetic factors
 - typically in older adults
- 90% of subjects is obese – metabolic syndrome!!!
Insulin resistance

- physiologic amount of insulin does not cause adequate response
- compensatory hyperinsulinism
- further worsening by down-regulation of insulin receptors
Maturity-onset diabetes of the young (MODY1-6)

- group of monogenic conditions with autosomal dominant inheritance
- childhood, adolescence or early adulthood onset
- genetically determined β-cells dysfunction
 - but long-term measurable C-peptide without signs of autoimmunity
- 1% of diabetic patients

- two subgroups
 - mutations in glucokinase (MODY2)
 - glucokinase = glucose sensor (production and releasing of insulin is slowing)
 - mild form without considerable risk of complications
 - mutations in the genes encoding transcription factors (remaining 5 types)
 - severe β-cells defects progressively leading to diabetes with serious complications
 - Affected glucose-stimulated production and release of insulin and also proliferation and differentiation of β-cells
Main characteristics of T1DM and T2DM and MODY

<table>
<thead>
<tr>
<th></th>
<th>T1DM</th>
<th>T2DM</th>
<th>MODY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>childhood</td>
<td>adults</td>
<td>childhood</td>
</tr>
<tr>
<td>Genetic disposition</td>
<td>yes (oligogenic)</td>
<td>yes (polygenic)</td>
<td>yes (monogenic)</td>
</tr>
<tr>
<td>Clinical manifestation</td>
<td>often acute</td>
<td>mild or none</td>
<td>mild</td>
</tr>
<tr>
<td>Autoimmunity</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Insulin resistance</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Dependence on insulin</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Obesity</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Clinical presentation of manifest DM

- due to the increase of blood osmolality, osmotic diuresis and dehydration
 - classical
 - polyuria
 - thirst
 - polydipsia
 - weight loss
 - temporary impairment of visus
 - cutaneous infections
 - acute
 - hyperglycemic coma
 - ketoacidotic
 - non-ketoticidotic
 - hyperosmolar nonketoacidotic hyperglycemia
 - lactate acidosis
Complications of DM

- **microvascular**
 - diabetic retinopathy
 - diabetic nephropathy
 - diabetic neuropathy (sensoric, motoric, autonomic)

- **macrovascular**
 - atherosclerosis (CAD, peripheral and cerebrovascular vascular disease)

- **combined**
 - diabetic foot (ulcerations, amputations and Charcot´s joint)

- **others**
 - periodontitis
 - cataract
 - glaucoma