Glomerular diseases

Lecture from pathological physiology January, 2005

Fig. Glomerular basement membrane (GBM)

Glomerular diseases (glomerulopathy)

⇒ heterogeneous group of diseases

Dividing:
a) Primary glomerulopathy
b) Secondary glomerulopathy
 – can be manifestation of systemic diseases, vascular, metabolic or genetic disorders affecting also other organs

The mechanisms for glomerular injury are complex
↓
more often are initiated by an immune response
Immunopathologic mechanisms

Damage of kidney depend on:
- mechanism and intensity of immune reaction
- collocation of antigens (Ag)

Mechanisms:
- Damage by immunocomplexes
- Damage by cytotoxic antibodies (Ab)
- Cell-mediated immune injury = delayed-type hypersensitivity
- Damage by complement and proinflammatory mediators

Cytotoxic (Type II) reaction
- antibody mediated cytotoxicity (ADCC)

These occur when antibodies interact with antigens found on cell surface

2 mechanisms of cytotoxicity:
1. Ab mediate cell destruction via mechanism ADCC (cell cytotoxicity dependent on Ab)
2. Ab directed against cell-surface antigens mediate cell destruction via complement activation

Type III reaction – immune complex-mediated hypersensitivity

The reaction of antibody with antigen generates immune complexes. In some cases, large amounts of immune complexes can lead to tissue damage
- They deposited in various tissues
- induce complement activation and ensuing inflammatory response

Antigens can be:
- a) Endogenous – for example DNA in SLE
- b) Exogenous – bacteria, viral, parasitical Ag

The magnitude of the reaction depends on the quantity of immune complexes as well as distribution within the wall of glomerular capillary
Location of immune deposits in the glomerular capillary wall

- Subepithelial
- Subendothelial
- Intramembranous

Delayed – type hypersensitivity (Type IV)

T lymphocytes may also recognize antigen.

When they do, a mononuclear cell infiltrate may accumulate at the site of Ag concentration and lead to the elaboration of toxic products and tissue injury.

Four major pathogenetic forms of glomerular injury

In non-proliferative glomerulopathy:

- Damage by antibodies
- Damage mediated by complement

In proliferative glomerulopathy:

- Damage by circulating proinflammatory cells (especially neutrophils and macrophages)
- Damage by locally activating resident cells (for example mesangial cells)

Classification of glomerulopathies

- Clinical: primary x secondary
- According time period: acute x subacute x chronic
- According renal biopsy: focal x segmental x diffuse
- According number of cells: non-proliferative x proliferative
- According immunofluorescence:
Pathogenic mechanisms of glomerular diseases

- **Nephritic**
- **Nephrotic**
- **Chronic glomerulonephritis**

Histologic pattern

- May not correlate with the clinical presentation
- Various histological types of glomerulonephritis

Pathogenesis of nephritic diseases

B: “Minimal changes” GN = lipoid nephrosis: some mesangial proliferation, edematous podocytes, fusion (“loss”) of their foot processes

C: Intracapillary mesangial proliferative GN proliferation of endothelia and mesangium, peeling off of endothelial cells from the GBM, duplication of GBM, “humps” formed by immunocomplexes

D: Crescentic GN: proliferation of all components (aggressive white cells, endothelium, mesangium, epitheloid and giant cells), leakage of fibrin. Hypersensitivity reaction type II or IV

E: Membranous GN Precipitation of immunoglobulins on the outer surface of the GBM (“spike” → complete incorporation of Ig into the membrane)

F: Proliferative sclerotizing GN: advanced mesangial proliferation → narrowing and destruction of capillaries
Acute glomerulonephritis (poststreptococcal GN)

- Is commonly caused by infection by certain strains of group A beta-hemolytic Streptococci (pharyngitis, pyoderma)
 - Ab against streptococci react with vimentin → immunokomplexes
- Nephritis develop after a latent period of about 2-3 weeks
- Clinical syndrome: nephritic syndrome
- Histologic pattern: intracapillary proliferation of mesangial and endothelial cells with subepithelial ("humps") and subendothelial deposits (C3, or IgG)

Postinfectious non-streptococcus glomerulonephritis

- Acute glomerulonephritis can develop also in the course of other infections:
 - Staphylococci
 - Pneumococci
 - Klebsiella pneumonia
- Staphylococci
- Herpes virus
- EBV
- Virus hepatitis B

- GN in infection endocarditis
- GN in visceral abscessus (especially lung)

Histologic pattern and clinical syndrome – similar one as in poststreptococcal GN

Focal proliferative glomerulonephritis

- Different etiology:
 - IgA nephropathy
 - Nephritis in systemic lupus erythematoses (SLE)
 - Nephritis in bacterial endocarditis
 - Henoch-Schölein purpura
Rapidly progressive glomerulonephritis (RPGN)

- Heterogeneous group of diseases, it is characterised by intense proliferation of glomerular/capsular epithelial cells in the form of a crescent.
- Crescent = accumulation and proliferation of extracapillary cells.
- The glomerular capillaries collapse and are bloodless, and fibrin can be identified within the capsule.
- It can stimulate proliferation of parietal epithelial cells.
- Deposits of fibrin compress the glomerula capillaries tuft (↓ GFR and destruction of glomerulus).

Goodpastures’ syndrome

- It is characterised antibodies against basal membrane of glomeruli (alveoelastic membrane).
- Etiology: combination of exogenous factors (smoking, infection, toxins) with genetic predisposition (HLA B7, DR2).
- Pathogenesis: GBM is composed by collagen IV with proteins (laminine, entakte, tenascine) and proteoglycans.
- Goodpastures antigen (localised in C-terminal non-collagen globular domain (NC1) of the molecule α3 chain of collagen IV).
- Formation of Ab (IgG1 – can activate complement) → damage of BM.
- Clinical manifestation: typically presents with crescentic glomerulonephritis + pulmonary hemorrhage.

Three forms of RPGN

- GN with creation of antibodies (IgG, IgA) against GBM (anti-GBM)
 - Linear deposits of Ig
 (+ alveoelastic BM) → Goodpastures’ syndrome
- GN with granular deposits of Ig and complement
 - Formation of crescent is complication less serious intraelastic proliferative GN (IgA nephropathy, SLE, acute GN e.g.)
- GN with ANCA antibodies
 - ANCA ab (Ab against cytoplasm of neutrophiles)
 2 forms – systemic disorders
 (Wegener granulomatosis)
 - only renal disease

Slowly progressive glomerulonephritis

- Group of GN called membrane-proliferative GN
- 2 forms:
 - in 1 form: ↓ levels of complements in plasma
 - subendothelial and mesangial deposits are present
 - findings: proteinuria or picture of nephrotic syndrome
 - in 2 form: activation of complement is due to nephritic factor C3
 - intramembranous deposits are present
 - findings: proteinuria or picture of nephritic syndrome (similarity as in RPGN)
Pathogenesis of nephrotic diseases

- Loss of lipoprotein lipase
- Liver lipoprotein synthesis
- Hyperlipidemia
- Intravascular oncotic pressure
- Interstitial oncotic pressure
- Hypervolemia
- Loss of potassium
- ADH
- Aldosterone
- Hypovolemia
- Proteinuria
- Filtration of proteins into interstitium
- Permeability of capillaries
- Na retention

„Minimal changes“ GN (lipoid nephrosis)

- Especially in children
- Pathogenesis ambiguous – connection with viral infections, vaccination, atopy, application some drugs (antiphlogistics etc.), Association with several HLA antigens (DRw7, B8, B12 ...)
- Finding: loss of negative charge
 (↑ permeability for some proteins – albumins)
- Histologic pattern: fusion („loss“) of foot processes of podocytes (pedicules), edematous podocytes, some mesangial proliferation
- Therapy: corticoids

Focal (segmental) glomerulosclerosis

- More serious degree
 - focal: < 50% glomeruli are affected
 - diffuse: > 50% glomerulus are affected
 - segmental: only a part of the glomerular tuft is involved
 - glomerulosclerosis: obliteration of capillary lumens
Membranous GN

- Diffuse thickness of GBM due to deposition of Ig in basement membrane
- Strong association with HLA (B8, DR3) and genes of alternative way of activation of complements (Bf)
- Often secondary etiology:
 - drugs (Au, penicilamin...)
 - tumors (especially ca GIT)
 - infection (hepatitis B)
- Clinical manifestation: nephrotic syndrome with miroscopic hematuria and sometimes hypertension
- Therapy: according etiology

Membranoproliferative (mesangiocapillary) glomerulopathy

- Is characterised by hypercellularity of the glomerular cells and basement membrane thickening
- 2 forms: classical form – proliferation of mesangial matrix with expansion to capillary walls between endothelium and BM
disease of denser deposits – non-linear accumulation of material in lamina densa of the basal membrane
- etiopathogenesis: ??? - association with infection (endocarditis, abscessus....) - genetic fators (HLA B8, DR3....)
- Clinical syndrome: nephrotic proteinuria with microhematuria, hypertension, anemia and decreased levels of the complements (C3)
IgA nephropathy (Berger’s disease)

- Mesangiproliferative GN with deposits of IgA, event. C3
- Etiology: - unknown, clinical manifestation is associated with infection – with latent period 2-3 days
 - association with HLA (DQ, DP)
 - T-lymphocytes produce ↑ levels of IL-2 (+ ↑ IR-2R) and they are constantly stimulate
 - ↑ production of IgA by B-lymphocytes
- Clinical manifestations: asymptomatic hematuria - nephrotic syndrome

Chronic glomerulonephritis

- Common terminal result of many glomerular diseases
 - („end stage kidney“)
- It is characterised by different degrees of sclerosis and proliferation

Pathogenesis:
- damage (loss) of nephrons
 - ↓ hyperperfusion
 - ↓ hyperfiltration
 - sclerosis of glomeruli

Glomerulopathy in connective tissue disorders

Systemic lupus erythematosis

- SLE predominantly affects women, who account for 90% cases
- The age of onset is usually between 20 and 40 years
- Many different tissues and organs may be involved (the body produces antibody against its own DNA), but renal involvement is the most significant in terms of outcome

- Histologic pattern:
 - WHO classification – normal glomerules (typ I)
 - mezangial GN (typ II)
 - focal proliferative GN (typ III)
 - diffuse proliferative GF (typ IV)
 - membranous GN (typ V)
 - glomerular sclerosis (typ VI)

Vasculitis

- Heterogenous group of diseases characterised by necrotising inflammation of vessels
- Etiology: primary x secondary

- Pathogenesis:
 - damage by immuno complexes
 - ANCA (pauciimmune form)
 - damage by cells (IV. typ)
Henoch-Schönlein purpura

- Systemic vasculitis affecting medium-sized vessels
- Especially in children and younger people
- It frequently develops post-infections
- Clinical manifestation: non-trombocytopenic purpura
 - Affect joints, serous membrane, GIT and glomeruli

 ↓
 alterations are similar to finding in IgA nephropathy

Polyarteritis nodosa

- Is an inflammatory and necrotizing disease involving the medium-sized and small arteries throughout the body.
- Men are more commonly affected than women
- Etiopathogenesis: usually unknown
- Clinical manifestation: variable – general symptoms + specific symptoms
 (skin, kidney, GIT, heart...)
- Histologic pattern: focal glomerular sclerosis, crescents

Pauci-immune necrotizing GN

Wegener’s granulomatosis

- Is a vasculitis leading to sinus, pulmonary and renal disease

 glomerulonephritis

 ↓

 90% of such patients have a positive ANCA
 ANCA – react with neutrophils
 ↓
 respiratory burst of phagocytic cells
 ↓
 release of free radicals
 ↓
 degranulation
 ↓
 injury to endothelial cells

Diabetic nephropathy

= diabetic intracapillary glomerulosclerosis (sy Kimmelstilv-Wilsonův)

Etiopathogenesis: hyperglycemia affects conformation BM and mesangial matrix

↑ renal flow and glomerular pressure (hyperfiltration)

↓ proliferation of cells

thickness GMB with expansion of mesangia

glomerulosclerosis

Clinical manifestation: latent stage - asymptomatic
incipient stage
manifest stage of diabetic nephropathy
chronic renal failure
Schematic demonstration of running diabetic nephropathy

- Normal state: pressure in glomerular capillaries 35 mm Hg
- Predominantly diabetic nephropathy: pressure in glomerular capillaries 45 mm Hg
- Progressive diabetic nephropathy: pressure in glomerular capillaries 45 mm Hg

- Luminal capillary
- GBM
- Glomerular filtrate
- Albumin, IgG

Amyloidosis

Kidney belong to organs most frequently affected by amyloidosis

AL amyloidosis – is a complication of myeloproliferative diseases (myeloma, (primary) makroglobulinemia)

AA amyloidosis – is a complication of chronic inflammatory diseases (RA, (secondary) TBC, Crohn’s disease e.g.)

Clinical manifestation: nephrotic syndrome, subsequently renal failure develops

Hereditary nephropathies

Alport syndrome
- Hereditary nephritis with deafness (X chromosome)
- Pathogenesis: congenital defect of collagen synthesis
- GMB very slight or with more layers
- GN focal (diffuse) proliferation with segmental sclerosis
 ⇒ hematuria, proteinuria or renal failure (males)

Congenital nephrotic syndrome
- AR heredity
- Pathogenesis: defect of synthesis of basal membrane
 - Pronounced and non-selective proteinuria
 ⇒ Nephrotic syndrome from first weeks of the life — renal failure