Inflammation
- acute phase reaction, cytokine network, chemokines

Immune system
- able to recognize "body's own" from "foreign"
 - terms antigen ≠ allergen ≠ superantigen
- main functions
 - self-defence
 - together with stress reaction inflammation represents body response to threat
 - homeostasis
 - continuous removal of old and damaged cells in order to maintain structural and functional integrity
 - immune surveillance on replication and reproduction
 - removal of mutated cells
- organs and tissues of immune system
 - bone marrow and peripheral blood
 - thymus
 - spleen
 - lymphatic nodes
 - extranodal lymphatic tissue (MALT)
 - tonsils, Peyers plaques, ...

Immune system cells

Mechanisms of immune defence
- according to the way of antigen recognition:
 - non-specific (innate)
 - specific (adaptive)
- according to the participating system:
 - humoral
 - cellular
- other cooperating systems:
 - clotting cascade
 - fibrinolysis
 - vascular endothelium
 - acute phase proteins

Reactions of immune system
- physiological = inflammation as a defence phenomenon
 - acute inflammation
 - reactions of vascularized tissues to pathogenic stimulus – material released from damaged or dead cells due to physical or chemical injury, or infection, ...
 - with aim to remove to restore the integrity

Antigen recognition
- amplification of signal
 - effector phase (together with feedback regulation)
 - in some cases inflammation consist almost exclusively non-specific immune reactions (non-infectious etiology)
 - in case of antigenic stimulus specific immune reaction follows
 - it depends on particular antigen whether reaction will be predominantly humoral or cellular
 - non-specific immune reactions are largely responsible for clinical picture of any inflammation

Physiologic immune reaction
- aiming to eliminate foreign material from organism
- 3 phases:
 - antigen recognition
 - amplification of signal
 - effector phase (together with feedback regulation)
 - in some cases inflammation consist almost exclusively non-specific immune reactions (non-infectious etiology)
 - in case of antigenic stimulus specific immune reaction follows
 - it depends on particular antigen whether reaction will be predominantly humoral or cellular
 - non-specific immune reactions are largely responsible for clinical picture of any inflammation
 - extent of damaged cells/amount of antigen, way of entering the body, time of exposure and general condition of organism govern the intensity of reaction
 - inapparent
 - local
 - calor, rubor, dolor, tumor, functio laesa
 - systemic
 - fever, tachycardia, hyperventilation, prostration, loss of appetite, metabolic and endocrine alterations
Innate immunity – acute inflammation

- participating cells/proteins
 - endothelium
 - thrombocytes
 - coagulation cascade (PMN, neutrophil granulocytes)
 - complement
 - mast cells, basophils, eosinophils
 - monocytes/macrophages
- feedback regulation
 - inhibitors of complement intermediate products
 - anti-proteases (α1-antitrypsin, α2-macroglobulin)
 - antioxidant enzymes (SOD, catalase, ...)
 - anti-inflammatory cytokines
 - fibrinolysis

Endothelium and platelets

- endothelium
 - formation of NO by inducible NOS
 - reaction of NO with superoxide produces aggressive peroxynitrite
- formation of PGI2 by PLA2 and PLC from arachidonic acid (membrane phospholipids)
- increased expression of adhesive molecules (E-selectins, integrins, ICAM, VCAM, PECAM)
 - at first, they allow "rolling" of PMN on the endothelium
 - later, firm adhesion and extravasation into extravascular tissue (extravasation)
- formation of anti-aggregative and fibrinolytic factors
 - tPA, thrombomodulin
- formation of pro-aggregative factors
 - endothelin, PAF, vWF

Activation of endothelium

PMN

- number increases (leukocytosis)
- diapedesis into tissues
- antigen recognition does not require HLA
 - phagocytosis → metabolic "burst" (production of ROS, RNS etc.)
 - superoxide produced by NAD(P)H oxidase → (SOD) peroxide → hydrochlorous acid (myeloperoxidase)
 - superoxide (NAD(P)H oxidase) → peroxide (SOD) → hydroxyl radical (Fenton reaction with Fe)
 - secretion of proteolytic lysosomal enzymes
 - activation of PLC a PLAs → PGI2, PGE2, TXA2, LT
 - PMN produce cytokines
 - IL (1, 6, 8), TNFα, G-CSF, GM-CSF, interferon, PAF, plasminogen activator, LTA, ...

Phagocytosis by PMN

Chemotaxis and its mediators

- Chemotaxis
 - directed movement of cells in the concentration gradient of soluble substances (chemokinetic factors, chemoattractants or chemotactic factors)
 - positive – along the concentration gradient
 - negative – against the concentration gradient
 - biologic activity mediated by specific cell surface receptors for these factors, their expression is modulated by cytokines, other immune effectors, and external factors
 - other factors participate in chemotaxis too - extracellular matrix, adhesion molecules, cytoskeleton and some LMW substances
 - Origin of chemotactic factors
 - degranulating cells
 - activated immune cells
 - activated endothelial cells
 - Types of chemotactic factors
 - oligopeptides of bacterial origin
 - cytokines (chemokines, interleukins, TNFα, IFNγ) produced by PMN and macrophages
 - complement cascade products (C5a)
 - kallikrein and bradykinin from coagulation cascade
 - AA derivatives - prostaglandins, leucotriens (mainly from macrophages)
 - tachykinins (substance P, neurokinin A, substance K, neuropeptide K, neuropeptide γ, neurokinin B)
 - Functions (vascular permeability factor)
Monocytes/macrophages, NK-cells

- phagocytosis without previous contact with antigen
- production of cytokines
- macrophages function as antigen presenting cells (APC)
 - transition between non-specific and specific immunity

Mast cells (basophils), eosinophils

- mast cell (basophil) - localised mainly perivascularly in the skin and mucous membranes
 - following stimulation by antibodies (IgE) or complement C5b-9, they release content of their granules:
 - histamin
 - serotonin
 - heparin
 - proteolytic enzymes
 - derivatives of arachidonic acid
 - cytokines
- eosinophils
 - active mainly in parasitic infections and allergies
 - release of granules - cationic proteins- eosinophil peroxidase (EPO), major basic protein (MPO), eosinophil-derived neurotoxin (EDN)
 - binding to the neg. surfaces - damage, increased permeability (e.g. pulmonary edema in ARDS)

Coagulation cascade

- both types of activation active in inflammation
- ↑ kallikrein → bradykinin → vasodilation

Complement system (CS)

- biochemical cascade of more that 35 proteins (directly active or regulatory) leading to:
 - cytolysis
 - chemotaxis (mainly C5a)
 - opsonization ("marking" the pathogens for phagocytosis), mainly C3b
 - anaphylatoxins (mainly C3a) → activation of mast cells
- 3 pathways of activation of CS:
 - classical
 - alternative
 - lectin pathway
 - at the beginning of inflammation CS is first activated by alternative pathway
 - then, when antibodies are formed, by classical pathway

Activation of CS

- all 3 pathways lead to the formation of C3-convertase, which begins to form membrane attack pathway (MAC, C5b, C6, C7, C8 and polymeric C9), leading to the formation of MAC, membrane attack complex
 - MAC is a cytotoxic end-product of CS producing trans-membrane channel causing osmotic lysis of target cell
- classical pathways begin with activation of complete C3 by binding of C1q on antigen-antibody complex
 - C1q binds to C1r and C1s, then C1r and C1s cleave C4 and C2 to C4b and C2b, they bind together to form C3-convertase
- alternative pathway begins with hydrolysis of C3 on the surface of pathogen
 - C3 cleaves to C3a and C3b
 - C3b binds to factor B; this complex is then cleaved by factor D to Bb and C3-convertase
- lectin pathway is homologous to classical one, but there’s an opsonin mannose-binding lectin (MBL) instead of C1q

Adaptive immunity

- APC (macrophages, dendritic cells, ..)
- regulatory lymphocytes T (Th, CD4+)
- effector lymphocytes T (cytotoxic Tc, CD8+) and B (plasmocytes)
- antibodies
- cytokines
 - interleukins/TNF
 - interferons
 - chemokines
 - growth factors
 - colony-stimulating factors
Specific immune reactions

- Contact with antigen + stimulation by cytokines from Th
 - Proliferation and differentiation into plasmocytes
 - Production of antibodies

APC – Th / APC-Tc cooperation

Activation of B-lymphocytes

- Contact with antigen + stimulation by cytokines from Th
 - Proliferation and differentiation into plasmocytes
 - Production of antibodies

Antibodies

- Classes
 - IgM, IgA, IgD, IgE, IgG

- Function
 - Neutralisation of pathogens
 - Activation of CS
 - Antibody dependant cell-mediated cytotoxicity (ADCC)
 - NK cells attach to Fc fragments → perforins & granzymes → caspases → apoptosis

Cytokines

- Variable group of soluble proteins and peptides
 - Act in pH to nM concentrations
- Cytokines regulate function of almost all immune cells under physiologic as well as pathologic conditions
 - Cell division - mitogens or anti-mitogens (growth factors)
 - "Survival" or "suicide" factors (apoptosis)
 - Transformation and differentiation factors

- Some cytokines soluble while others membrane-bound
 - Balance between soluble and bound fraction is a regulated parameter
- Most of them pleiotropic, i.e. different biological activities
- Important modulators during embryogenesis and organogenesis
- Nomenclature (often reflects first described function or origin):
 - Interleukins, lymphokines, monokines, interferons, TNF, CSF etc.
- Cytokine receptors
 - Tyrosine kinase receptors with intrinsic kinase activity
 - Serine kinase receptors with intrinsic kinase activity
 - G-protein coupled receptors and ion-gated receptors
 - Cytokines act via their receptors, however, not directly, but via activation of specific transcription factors
 - Expression of immediate early response genes
 - Their products regulate transcription of delayed early response genes
Th1/Th2 cytokines

- Th1 and Th2 class cytokines are produced by different sub-populations of CD4+ Th-lymphocytes
 - Th1 cytokines favour cell-mediated immune responses
 - IL-2, IFNγ, IL-18, TNFβ, etc.
 - Th2 cytokines favour differentiation of B-cells and humoral immunity
 - IL-4, -5, -6, -10, -13, etc.
- Imbalance between the 2 sub-populations pathogenic factor in allergic vs. autoimmune diseases

Fever (pyrexia)

- Temperature is regulated in the hypothalamus
- Pyrogens:
 - Cytokines (IL-1, IFNγ, TNF) produced by phagocytes
 - LPS
- Pathophysiology:
 - LPS binds to circulating LBP
 - LBP + LPS complex binds to CD14
 - Activation of PLA2, COX-2, PGE2 synthase
 - Production of PGE2
 - Re-set the temperature set-point
 - Brain orchestrates heat-producing mechanisms
 - Muscle tone (shivering)
 - Non-shivering thermogenesis

Systemic manifestation of inflammation

- Increase of body temperature – fever
- Leukocytosis
- Tachycardia
- Hyperventilation
- Fatigue
- Loss of appetite
- Metabolic and endocrine alterations
 - Gluconeogenesis, protein catabolism, ACTH, cortisol, glucagon, T4, aldosterone, vasopressin, Cu
 - ↓ albumin, Fe, Zn, transferrin
- Synthesis of reactants of acute phase

Reactants of acute phase (RAF)

- Heterogenous group of plasma proteins synthesized in liver in response to inflammatory stimuli
 - C-reactive protein (CRP)
 - Cleaved by PMN enzymes
 - Serum amyloid A protein (SAA)
 - α1-antitrypsin, α1-antichymotrypsin, α2-macroglobulin
 - Fibrinogen, prothrombin, FVIII, plasminogen
 - Haptoglobin, hemopexin, ferritin
 - Complement system factors
- Variable function of RAF
 - Optimize opsonization and chemotactic factors
 - Serum amyloid A protein (SAA)
 - Inhibitors of proteases
 - α1-antitrypsin, α1-antichymotrypsin, α2-macroglobulin
 - Coagulation factors
 - Hepatoplasmin, transferrin, ferritin

Cytokine network

Summary - inflammation
Dynamics of RAF

<table>
<thead>
<tr>
<th>Class of Proteins</th>
<th>RAF</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibitors of proteases</td>
<td>α₁-antitrypsin, α₁-antichymotrypsin</td>
<td>4 x</td>
</tr>
<tr>
<td>Coagulation proteins</td>
<td>fibrinogen, erythromycin, factor VIII, plasminogen</td>
<td>8 x</td>
</tr>
<tr>
<td>Complement system factors</td>
<td>C1q, C2b, C3, C4, C5, C9, C1q</td>
<td>2 x</td>
</tr>
<tr>
<td>Transport proteins</td>
<td>haptoglobin, hemopexin, ferritin</td>
<td>8 x</td>
</tr>
<tr>
<td>Scavenger proteins</td>
<td>ceruloplasmin</td>
<td>4 x</td>
</tr>
<tr>
<td>Others</td>
<td>α₁-acid glycoprotein (orosomucoid)</td>
<td>4 x</td>
</tr>
<tr>
<td></td>
<td>SAA protein</td>
<td>1000 x</td>
</tr>
<tr>
<td></td>
<td>CRP</td>
<td>1000 x</td>
</tr>
</tbody>
</table>

Typical changes of plasma levels of CRP, fibrinogen, ESR (erythrocyte sedimentation rate) and albumin during acute inflammation

Critical situations connected to systemic inflammation

- **Sepsis**
 - widespread activation of immune and coagulation systems due to sepsis and multi-organ dysfunction
- **Disseminated intravascular coagulation (DIC)**
 - generalized activation of clotting cascade by various stimuli incl. infection leading to multiple thrombi (early phase) and then hypo-coagulative state (late phase)
- **Adult respiratory distress syndrome (ARDS)**
 - life-threatening condition causing lung edema and fluid transudation into the air sacs due to increased permeability of the pulmonary microcirculation
 - they can be damaged by released proteolytic enzymes and other mediators of inflammation
 - fluid inhibits gas exchange between the air and the bloodstream