Diabetes mellitus

Definition of diabetes mellitus (DM)
- DM is a group of metabolic disorders characterized by hyperglycemia resulting from a lack of insulin effect
 - due to either defect in insulin secretion or insulin action
- **chronic hyperglycemia** leads to long-term cell, tissue & organ damage = **diabetic complications**
 - retina
 - kidney
 - nerves

Diagnosis of DM
- diabetes
 - **classical symptoms** + **random plasma glycemia** ≥11.1 mmol/l (venous plasma)
 - random = any time of the day
 - symptoms include polyuria and polydipsia
 - FPG (fasting plasma glucose) ≥7.0 mmol/l
 - fasting means at least 8 h from the last meal
 - **2-h PG (postprandial glucose)** ≥11.1 mmol/l during oGTT
 - oGTT: according to the WHO consists of FPG examination followed by a standard load of 75g of glucose (diluted in water) and examination of glycemia in 60th and 120th minute
- impaired glucose tolerance (IGT)
 - excluded <7.8 mmol/l
 - 2-h PG ≥7.8 - <11.1 mmol/l during oGTT
- impaired fasting glucose (IFG)
 - diabetes excluded by FPG ≤5.6 mmol/l
 - FPG ≥5.6 – <7 mmol/l

Interpretation of glycemia

<table>
<thead>
<tr>
<th>glycemia (mmol/l)</th>
<th>diabetes</th>
<th>IGT</th>
<th>IFG</th>
<th>normal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>11.1</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FPG</th>
<th>60 min</th>
<th>120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 min</td>
<td>11.1</td>
<td>7.8</td>
</tr>
<tr>
<td>120 min</td>
<td>7.8</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Regulation of glycemia

- **Humoral**
 - **Principal**
 - insulin
 - glucagon
 - **Auxiliary**
 - glucocorticoids
 - adrenalin
 - growth hormone

- **Neural**
 - sympathetic
 - hyperglycemia
 - parasympathetic
 - hypoglycemia

Main contra-regulation: insulin/glucagon

The way glucose enters the cell???

- Exocytosis from B-cells of islets of Langerhans into portal circulation
 - 50% degraded during first pass through liver
 - parallel cleavage of the C-peptide
- Total daily production in healthy subject ~20-40 U
 - 1/2 **basal** (postabsortive) secretion
 - pulsatile (5 - 15 min intervals)
 - 1/2 **stimulated** (postprandial)
 - early phase (ready insulin)
 - Glc/KATP-dependent
 - late phase (synthesis de novo)
 - other secretagogues

Stimulation of secretion
- < < glucose
- < < amino acids
- < GIT hormones (incretins)
- FFA
 - variable stimulation (length of chain & (un)saturation)!!
 - since insulin is acting also as peripheral "satiety" signal, reaching the satiety is delayed after fatty meal
Insulin synthesis

C peptide
- activity
 - certain beneficial vascular effects (nitric oxide)
- mainly diagnostic use
 - equimolar to insulin
 - unlike insulin, C-peptide is not degraded from portal blood in liver
 - the systemic concentration reflects endogenous insulin production

Coupling: glycemia – insulin secretion

Summary: coupling of glycemia → biphasic insulin secretion

Insulin Secretion is Biphasic

Phase 1
- Insulin Exposure
- Mobilization (aqueous phase)
- 1st phase
- High glucose levels
- 1st phase
- 2nd phase
- Membrane insulin and hormone release
- Glucose metabolism

Phase 2
Incretins – enteroinsular axis

- GIT hormones produced by endocrine cells of small intestine stimulating insulin secretion even **before elevation of blood glucose**
 - hypoglycemia – if the patient still conscious then better to give Glc per os
- "forward" regulatory mechanism – anticipation of increase of Glc
- 2 major incretin hormones
 - GIP (glucose-dependent insulino trophic peptide or gastric inhibitory peptide)
 - GLP-1 (glucagon-like peptide-1)
- treatment of T2DM (= delayed effect of Glc on Ins stimulation) by incretin analogues
 - GLP-1 analogue - exenatide (GLP-receptor agonist)
 - DPP-4 inhibitors (dipeptidyl peptidase 4 - proteolytic degradation of incretins) - gliptins
 - improvement of Glc-stimulated Ins secretion after meal
 - suppression of postprandial glucagon release
 - delayed gastric emptying
 - protection of β-cells from apoptosis

Insulin receptor signal cascade

- insulin receptor
 - tyrosinokinas type (2 α and 2 β subunits)
 - (1) cascade of phosphorylations (down-stream kinases)
 - balanced activation or inhibition of hormones
 - activation of anabolic pathways (i.e. glycogenogenesis, lipogenesis)
 - inhibition of catabolic pathways (e.g. lipolysis, glycogenolysis) and gluconeogenesis
 - (2) translocation of GLUT4

Classification of tissues according to insulin action:

- **insulin-sensitive**
 - muscle
 - adipose tissue
 - glucose uptake facilitated by GLUT4, which becomes integrated into cell membrane after insulin receptor activation
- **insulin-insensitive**
 - all others incl. muscle, adipose and liver
 - glucose uptake is realized by facilitated diffusion by GLUT1, 2, 3, 5, ...
 - permanently localized in the cell membrane
 - transport of glucose depends solely on concentration gradient
 - type and density of GLUTs

- liver
 - metabolic actions
Diabetes mellitus

- heterogeneous syndrome characterized by hyperglycemia due to deficiency of insulin action as a result of
 - absolute insulin deficiency
 - destruction of the β-cells of the islets of Langerhans
 - relative deficiency of insulin secretion and/or action
 - abnormal molecule of insulin (mutation of insulin gene)
 - defective conversion of preproinsulin to insulin
 - circulating antibodies against insulin or its receptor
 - secondary failure of β-cells of the islets of Langerhans
 - insulin resistance in peripheral tissues
 - receptor defect
 - post-receptor defect
- prevalence of DM in general population 5%, over the age of 65 already 25%

Prevalence (%) of diabetes (population 20-79 years)

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Diabetes</th>
<th>Diabetics in Czech Rep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>4.3 bil. (from a total of 7 bil.)</td>
<td>285 mil.</td>
</tr>
<tr>
<td>2030</td>
<td>5.6 bil. (from a total of 8.5 bil.)</td>
<td>1.2 mil.</td>
</tr>
</tbody>
</table>

Classification of DM

1. Diabetes mellitus type 1 (T1DM) ~5%
2. Diabetes mellitus type 2 (T2DM) ~90%
3. Other specific types:
 a. genetic defects of B-cell
 - monogenic DM (MODY1 - 6)
 - mutation of mitochondrial DNA
 b. genetic defects leading to insulin resistance
 - type A insulin resistance, leprechaunismus, Rabson-Mendenhall syndrome, lipoatrophic DM
 c. diseases of exocrine pancreas
 - pancreatitis, tumor, cystic fibrosis, hemochromatosis
 d. endokrinopathies
 - Cushing syndrome, acromegaly, pheochromocytoma, hyperthyreosis
 e. iatrogenic DM (i.e. drugs and toxins)
 f. other genetic syndromes associated with DM
 - Down, Klinefelter, Turner syndromes, ...
4. Gestational diabetes mellitus

T1DM (formerly IDDM)

- selective autoimmune destruction of β cells of islets in genetically predisposed individuals
- genetic susceptibility
 - chromosome 6 – MHC class III
 - DR3-DQ2 and DR4-DQ8
 - chromosome 11 – insulin gene
- cytotoxic autoimmunity mediated by T-lymphocytes
 - there are also antibodies against β cell structures (ICA, GAD, IAA), but they are rather markers of autoimmunity than causal agent
T1DM

- autoimmunity has to be triggered by various factors
 - infection
 - viruses
 - rubella, measles, coxsackie B, CMV, EBV, enteroviruses, retro-viruses
 - mechanism is unclear
 - cytolytic (sequestration of antigens
 - formation of neoantigens
 - molecular mimicry or superantigens
 - environmental factors (according to the epidemiologic evidence)
 - diet – early exposition proteins of cow’s milk
 - bovine insulin
 - vitamin D – reason for northern-southern geographical gradient?
 - toxins (diet, water, bacteria)
 - gluten???
 - manifestation typically in childhood
 - absolute dependence on exogenous supplementation by insulin

Natural history of T1DM

T2DM (formerly NIDDM)

- insulin sensitivity is a continuous trait with distinct interindividual variability, it can be assessed by:
 - hyperinsulinemic euglycemic clamp
 - calculated indexes (based on relationship between glycemia and insulin during fasting or oGTT) – e.g., HOMA, QUICKI, ...
- main pathophysiologic feature of T2DM is an imbalance between insulin secretion and its effect
 - in the time of clinical manifestation there are both insulin resistance and impairment of insulin secretion
 - what is “chicken” and what is “egg”??
 - insulin resistance
 - genetic predisposition (polygenic) – thrifty phenotype
 - acquired factors
 - competition of Gls with NEFA!!! (diet)
 - effect of adipokines from adipose tissue (obesity)
 - ↓ mobilisation of GLUT4 in physical inactivity
 - down-regulation of ins. receptor due to hyperinsulinemia
 - impairment of secretion
 - inherited factors
 - fewer B-cells (~20-40%)
 - defect of 1. phase of Ins secretion (~80% reduction)
 - acquired factors
 - gluco- and lipotoxicity for B-cells
 - 90% of subjects are obese – metabolic syndrome!!!

Pathogenesis of T2DM
Natural history of T2DM

Insulin- and “sport”-dependent translocation of GLUT4

Main characteristics of T1DM and T2DM

Clinical presentation of DM

<table>
<thead>
<tr>
<th></th>
<th>T1DM</th>
<th>T2DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>onset</td>
<td>childhood</td>
<td>adults</td>
</tr>
<tr>
<td>genetic disposition</td>
<td>yes (oligogenic)</td>
<td>yes (polygenic)</td>
</tr>
<tr>
<td>clinical manifestation</td>
<td>often acute</td>
<td>mild or none</td>
</tr>
<tr>
<td>autoimmunity</td>
<td>yes</td>
<td>No</td>
</tr>
<tr>
<td>insulin resistance</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>dependence on insulin</td>
<td>yes</td>
<td>No</td>
</tr>
<tr>
<td>obesity</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

- due to the increase of blood osmolality, osmotic diuresis and dehydratation
 - classical
 - polyuria, thirst, polydipsia
 - tiredness
 - others
 - temporary impairment of visus
 - recurrent infections
 - perio-/parodontitis

- extreme hyperglycemia
 - ketoacidotic coma
 - non-ketoticidotic hyperglycemic coma
 - lactic coma
Complications of DM

- microvascular
 - diabetic retinopathy
 - diabetic nephropathy
 - diabetic neuropathy
 - sensoric
 - motoric
 - autonomous

- macrovascular
 - accelerated atherosclerosis (CAD, peripheral and cerebrovascular vascular disease)

- combined
 - diabetic foot (ulcerations, amputations and Charcot’s joint)

- others
 - periodontitis
 - cataract
 - glaucoma

Pathogenesis of complications

(1) extracellular protein cross-linking
(2) modification of intracellular proteins (ubiquitin / proteasome)
(3) binding to receptors & activation of signaling pathways