Electrocardiography (ECG)

Principles of ECG recording & description
Interpretation of the most common ECG pathologies

Standard ECG recording

- 12-lead ECG
 - 3 bipolar limb leads I, II and III
 - 3 unipolar “augmented” limb leads aVL, aVR, aVF
 - 6 unipolar precordial leads V1 – V6

Placement of electrodes

- limbs
 - right upper limb
 - left upper limb
 - left lower limb
 - right lower limb
- chest
 - 4th intercostal space right parasternally
 - …
 - 5th intercostal space in middle axillar line

Electrocardiogram (ECG)

- record of potential changes over the time course
- potential changes results from periodical depolarisation followed by repolarisation of the myocardium
 - this produces electrical field measurable by electrodes placed on the body surface
- morphology of the ECG curve is a sum of instantaneous el. vectors

ECG curve

Description of ECG - algorithm

1. rhythm
 - a. pacemaker
 - b. regular/irregular
2. frequency
3. el. cardiac axis
4. analysis of individual waves and intervals
Description of ECG

- **rhythm**
 - sinus: the only physiological, 60-90/min
 - other:
 - junctional: 40-60/min
 - idioventricular: 30-40/min
 - atrial fibrillation: atria up to 600/min
 - atrial flutter: ventricles 60-90/min
- **heart beat**
 - regular
 - irregular
- **frequency**
 - normal: 60 – 90/min
 - tachycardia: > 90/min
 - bradycardia: < 60/min

Electrical cardiac axis

- direction of el. activity during depolarisation of chambers
 - normal axis: -30 to +105
 - pathology:
 - ventricular hypertrophy
 - bundle branch block

How to determine el. axis?

- direction of el. axis is conventionally described in frontal level by an angle between al. axis and horizontal line of the 1st lead
- projection of R in limb leads into Eithoven’s triangle

Analysis of waves and intervals

- waves: P, T, (U)
- deflections: Q, R, S
- intervals:
 - PQ (PR): 0.12 – 0.20s
 - QRS complex: 0.06 – 0.10s
 - ST
 - QT
- amplitude:
 - R
 - deep Q

P wave (≤0.1s), PQ interval (0.12-0.20s)

- **P wave = atrial depolarisation**
 - P absent in:
 - atrial (ventricular) fibrillation and flutter
 - SA block, ventricular and supraventricular tachycardia, junctional rhythm
 - P mitrale
 - P pulmonale
- **PQ interval = AV conduction**
 - normally isoelectric
 - prolonged PQ
 - sign of fitness, digitalis, beta-blockers, myocarditis
 - shortened PQ
 - preexitation, tachycardia
QRS complex (0.06 – 0.1s)
- depolarisation of chambers
 - wider QRS
 - bundle branch block, ventricular extrasystoles, ventricular tachycardia, idioventricular rhythm
 - pathologic ("deep") Q
 - over the electrically "silent" area of myocardium
 - duration > 0.04s, depth > 3mm, > 1/4 of the following R
 - typically after transmural myocardial infarction
 - pathologic R
 - higher amplitude in ventricular hypertrophy
 - smaller amplitude in obesity, oedema (pericardial, pleural, generalised), emphysema etc.

Ventricular hypertrophy – voltage criteria
- "golden standard" method = echocardiography
 - ECG criteria are auxiliary
- Hypertrophy
 - concentric
 - eccentric
 - tLV > 12mm
 - tRV > 5mm
- ECG criteria
 - amplitude of R
 - el. axis points towards hypertrophic chamber
 - wider QRS (longer depolarisation of hpt. chamber)
 - event. ST-T changes as a sign of overload

ST segment
- ST + T wave = repolarisation of ventricles
- normally isoelectrical
- ST elevation
 - epicardial damage
 - transmural IM
 - pericarditis
 - aneurysm
 - Prinzmetal angina
- ST depression
 - subendocardial damage
 - ischemia (angina pectoris, non-transmural IM)
 - volume/pressure overload
 - tachycardia

T wave, QT interval (0.32 - 0.42s)
- repolarisation of ventricles
- except of aVR lead usually positive
- pathological T
 - coronary
 - flat
 - spiked
- pathological QT
 - prolonged
 - hypercalcemia, hypocalcemia, ischemia, LQTS
 - shortened
 - hypocalcemia, hypercalcemia

ECG presentation of AIM

Sequence of ECG changes during transmural AIM
- A. initial physiological curve
- B. super-acute stadium
 - spiked positive T waves (minutes)
- C. acute stadium
 - ST elevation = Pardee wave (minutes to hours)
- D. sub-acute stadium
 - normalisation of ST segment
- E. development of "deep" Q (event: persistent ST-T changes)
- F. chronic stadium
 - persistence of deep Q