A novel Kunitz protein with proposed dual function from Eudiplozoon nipponicum (Monogenea) impairs haemostasis and action of complement in vitro

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Lékařskou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

JEDLIČKOVÁ Lucie DVOŘÁK Jan HRACHOVINOVÁ Ingrid ULRYCHOVÁ Lenka KAŠNÝ Martin MIKEŠ Libor

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj International Journal for Parasitology
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.sciencedirect.com/science/article/pii/S0020751919300268?via%3Dihub
Doi http://dx.doi.org/10.1016/j.ijpara.2018.11.010
Klíčová slova Anticoagulant; Kunitz; Peptidase inhibitor; Factor X; Plasmin; Haematophagy; Helminth; Diplozoidae
Popis Serine peptidases are involved in many physiological processes including digestion, haemostasis and complement cascade. Parasites regulate activities of host serine peptidases to their own benefit, employing various inhibitors, many of which belong to the Kunitz-type protein family. In this study, we confirmed the presence of potential anticoagulants in protein extracts of the haematophagous monogenean Eudiplozoon nipponicum which parasitizes the common carp. We then focused on a Kunitz protein (EnKT1) discovered in the E. nipponicum transcriptome, which structurally resembles textilinin-1, an antihemorrhagic snake venom factor from Pseudonaja textilis. The protein was recombinantly expressed, purified and biochemically characterised. The recombinant EnKT1 did inhibit in vitro activity of Factor Xa of the coagulation cascade, but exhibited a higher activity against plasmin and plasma kallikrein, which participate in fibrinolysis, production of kinins, and complement activation. Anti-coagulation properties of EnKT1 based on the inhibition of Factor Xa were confirmed by thromboe-lastography, but no effect on fibrinolysis was observed. Moreover, we discovered that EnKT1 significantly impairs the function of fish complement, possibly by inhibiting plasmin or Factor Xa which can act as a C3 and C5 convertase. We localised Enkt1 transcripts and protein within haematin digestive cells of the parasite by RNA in situ hybridisation and immunohistochemistry, respectively. Based on these results, we suggest that the secretory Kunitz protein of E. nipponicum has a dual function. In particular, it impairs both haemostasis and complement activation in vitro, and thus might facilitate digestion of a host's blood and protect a parasite's gastrodermis from damage by the complement. This study presents, to our knowledge, the first characterisation of a Kunitz protein from monogeneans and the first example of a parasite Kunitz inhibitor that impairs the function of the complement. (C) 2019 The Author(s). Published by Elsevier Ltd on behalf of Australian Society for Parasitology.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info