Blind deconvolution decreases requirements on temporal resolution of DCE-MRI: Application to 2nd generation pharmacokinetic modeling
Purpose: Dynamic Contrast-Enhanced (DCE) MRI with 2nd generation pharmacokinetic models provides estimates of plasma flow and permeability surface-area product in contrast to the broadly used 1st generation models (e.g. the Tofts models). However, the use of 2nd generation models requires higher frequency with which the dynamic images are acquired (around 1.5 s per image). Blind deconvolution can decrease the demands on temporal resolution as shown previously for one of the 1st generation models. Here, the temporal-resolution requirements achievable for blind deconvolution with a 2nd generation model are studied.
Methods: The 2nd generation model is formulated as the distributed-capillary adiabatic-tissue-homogeneity (DCATH) model. Blind deconvolution is based on Parker's model of the arterial input function. The accuracy and precision of the estimated arterial input functions and the perfusion parameters is evaluated on synthetic and real clinical datasets with different levels of the temporal resolution.
Results: The estimated arterial input functions remained unchanged from their reference high-temporal-resolution estimates (obtained with the sampling interval around 1 s) when increasing the sampling interval up to about 5 s for synthetic data and up to 3.6-4.8 s for real data.