MASARYK NEUROSCIENCE HUB

Reseach and Educational Neuroscience Platform

 

 

 

About Masaryk Neuroscience Hub

Our Latest Research

Combined genomics and proteomics unveils elusive variants and vast aetiologic heterogeneity in dystonia

24 Feb

Combined genomics and proteomics unveils elusive variants and vast aetiologic heterogeneity in dystonia

Dystonia is a rare-disease trait for which large-scale genomic investigations are still underrepresented. Genetic heterogeneity among patients with unexplained dystonia warrants interrogation of entire genome sequences, but this has not yet been systematically evaluated. To significantly enhance our understanding of the genetic contribution to dystonia, we (re)analyzed 2,874 whole-exome sequencing (WES), 564 whole-genome sequencing (WGS), as well as 80 fibroblast-derived proteomics datasets, representing the output of high-throughput analyses in 1,990 patients and 973 unaffected relatives from 1,877 families. Recruitment and precision-phenotyping procedures were driven by long-term collaborations of international experts with access to overlooked populations. By exploring WES data, we found that continuous scaling of sample sizes resulted in steady gains in the number of associated disease genes without plateauing. On average, every second diagnosis involved a gene not previously implicated in our cohort. Second-line WGS focused on a subcohort of undiagnosed individuals with high likelihood of having monogenic forms of dystonia, comprising large proportions of patients with early onset (81.3%), generalized symptom distribution (50.8%) and/or coexisting features (68.9%). We undertook extensive searches for variants in nuclear and mitochondrial genomes to uncover 38 (ultra)rare diagnostic-grade findings in 37 of 305 index patients (12.1%), many of which had remained undetected due to methodological inferiority of WES or pipeline limitations. 

Maternal depression during the perinatal period and its relationship with emotion regulation in young adulthood: An fMRI study in a prenatal birth cohort

14 Feb

Maternal depression during the perinatal period and its relationship with emotion regulation in young adulthood: An fMRI study in a prenatal birth cohort

Background: Maternal perinatal mental health is essential for optimal brain development and mental health of the offspring. We evaluated whether maternal depression during the perinatal period and early life of the offspring might be selectively associated with altered brain function during emotion regulation and whether those may further correlate with physiological responses and the typical use of emotion regulation strategies.

Methods: Participants included 163 young adults (49% female, 28-30 years) from the ELSPAC prenatal birth cohort who took part in its neuroimaging follow-up and had complete mental health data from the perinatal period and early life. Maternal depressive symptoms were measured mid-pregnancy, 2 weeks, 6 months, and 18 months after birth. Regulation of negative affect was studied using functional magnetic resonance imaging, concurrent skin conductance response (SCR) and heart rate variability (HRV), and assessment of typical emotion regulation strategy.

Results: Maternal depression 2 weeks after birth interacted with sex and showed a relationship with greater brain response during emotion regulation in a right frontal cluster in women. Moreover, this brain response mediated the relationship between greater maternal depression 2 weeks after birth and greater suppression of emotions in young adult women (ab = 0.11, SE = 0.05, 95% CI [0.016; 0.226]). 

Previous 1 2 3 4 5 6 7 46 Next

Find more publications from masaryk neuroscience hub

State-of-the-art core services

Available Core Services

Core services

You are running an old browser version. We recommend updating your browser to its latest version.

More info