Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis

Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Medicine. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

MAZUR Ewa KULIK I. HAJNY J. FRIML J.

Year of publication 2020
Type Article in Periodical
MU Faculty or unit

Central European Institute of Technology

Citation
Web https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16446
Doi http://dx.doi.org/10.1111/nph.16446
Keywords Arabidopsis thaliana; auxin; auxin canalization; cell polarity; PIN1; TIR1; AFB
Description Plant survival depends on vascular tissues, which originate in a self-organizing manner as strands of cells co-directionally transporting the plant hormone auxin. The latter phenomenon (also known as auxin canalization) is classically hypothesized to be regulated by auxin itself via the effect of this hormone on the polarity of its own intercellular transport. Correlative observations supported this concept, but molecular insights remain limited. In the current study, we established an experimental system based on the model Arabidopsis thaliana, which exhibits auxin transport channels and formation of vasculature strands in response to local auxin application. Our methodology permits the genetic analysis of auxin canalization under controllable experimental conditions. By utilizing this opportunity, we confirmed the dependence of auxin canalization on a PIN-dependent auxin transport and nuclear, TIR1/AFB-mediated auxin signaling. We also show that leaf venation and auxin-mediated PIN repolarization in the root require TIR1/AFB signaling. Further studies based on this experimental system are likely to yield better understanding of the mechanisms underlying auxin transport polarization in other developmental contexts.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info