Deciphering Enzyme Mechanisms with Engineered Ancestors and Substrate Analogues

Investor logo
Investor logo
Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Medicine. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

GAO Tadeja DAMBORSKÝ Jiří JANIN Yves L. MAREK Martin

Year of publication 2023
Type Article in Periodical
Magazine / Source ChemCatChem
MU Faculty or unit

Faculty of Science

Citation
Web https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202300745
Doi http://dx.doi.org/10.1002/cctc.202300745
Keywords ancestral sequence reconstruction; azacoelenterazine; biocatalysis; bioluminescence; coelenterazine; luciferase; enzymes; FireProt ASR; reaction mechanism; substrate analogues
Attached files
Description Environmentally friendly industrial and biotech processes greatly benefit from enzyme-based technologies. Their use is often possible only when the enzyme-catalytic mechanism is thoroughly known. Thus, atomic-level knowledge of a Michaelis enzyme-substrate complex, revealing molecular details of substrate recognition and catalytic chemistry, is crucial for understanding and then rationally extending or improving enzyme-catalyzed reactions. However, many known enzymes sample huge protein conformational space, often preventing complete structural characterization by X-ray crystallography. Moreover, using a cognate substrate is problematic since its conversion into a reaction product in the presence of the enzyme will prevent the capture of the enzyme-substrate conformation in an activated state. Here, we outlined how to deal with such obstacles, focusing on the recent discovery of a Renilla-type bioluminescence reaction mechanism facilitated by a combination of engineered ancestral enzyme and the availability of a non-oxidizable luciferin analogue. The automated ancestral sequence reconstructions using FireProtASR provided a thermostable enzyme suited for structural studies, and a stable luciferin analogue azacoelenterazine provided a structurally cognate chemical incapable of catalyzed oxidation. We suggest that an analogous strategy can be applied to various enzymes with unknown catalytic mechanisms and poor crystallizability.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info